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Abstract. The aim of this work is to analyze the ability of a hybrid 
evolutionary algorithm (obtained by combining a crowding version of 
differential evolution with a local search procedure) in finding the global 
minimum of potential energy functions used in modeling atomic and 
molecular clusters. Results for Lennard-Jones, Morse and Dzugutov 
potentials are presented.  
 

   
1. Introduction.  Clusters optimization has as aim the identification of stable 
atomic or molecular structures and is of practical importance in semiconductor 
industry and in structure-based drug design. Frequently used models of cluster 
structures are those based on potential energy functions. Different variants of 
potential functions, modeling structural behavior relevant to rare gases, metals and 
molecular clusters bound by dispersion forces, have been proposed and used in the 
past decades. These potential functions generate different cluster models, e.g. 
Lennard-Jones clusters, Morse clusters, Dzugutov clusters [2]. The problem of 
identifying the global minimum of the energy function is notoriously difficult, 
mainly due to the fact that classical optimization methods are easily trapped in 
local minima which correspond to metastable structures. Different methods for 
cluster optimization have been proposed lately. Some of them use the idea of 
finding the global optimum by identifying attraction regions of different optima 
and refining the approximation by a local search (e.g. basin hopping method [2]). 
Other methods, e.g. simulated annealing, are based on the idea of escaping from 
the local optima by accepting structure modifications which, temporarily lead to an 
increase of the energy. In the last decade another approach, based on evolutionary 
algorithms, proved to be adequate in identifying optimal structures mainly in the 
case of large clusters [1,4,5,6,7].  

Evolutionary optimization is a paradigm based on the idea of using a 
population of configurations, each one representing a trial structure, and evolving 
this population toward better configurations by applying some nature inspired 
operations: crossover, mutation and selection.  Despite the fact that evolutionary 
algorithms proved to be robust global optimization tools, difficulties (especially 
related with slow convergence), can arise in applying them for cluster optimization. 
To eliminate this problem, Deaven and Ho [1] proposed the use of a hybridization 
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between a genetic algorithm and a local search method.  On the other hand, 
because of the huge number of local minima in the energy landscape in the case of 
large structures even the evolutionary algorithms have difficulties in identifying the 
global minimum. In order to reduce the risk of  convergence to a local minimum 
diversity preservation mechanisms should be applied. Their effect is that the 
population will eventually contain elements grouped in regions of attractions of 
different optima. Starting a local search from each attraction region increases the 
chance of identifying the global minimum. This is the underlying idea of the 
approach presented in this paper. In the next section we shortly review the potential 
functions used in the numerical experiments while in the other two sections we 
present the evolutionary approach and some numerical results. 
 
2. Potential functions.  The general form of potential energy functions is: 
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where  xi denotes the spatial position of particle  i (a triplet of Cartesian coordinates) 
and d denotes the Euclidean distance. Different expressions of the potential 
function, V, lead to different models. Some of the most used potentials are [2]: 
Lennard-Jones, Morse and Dzugutov. The Lennard-Jones potential, in its scaled 
version, is: 
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 It provides a reasonable  description of the interatomic interactions of rare gases[2]. 
The Morse potential can be expressed by [2]: 
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where ?>0 is a parameter which determines the range of the interparticle forces.  
When ?=6 the Morse potential is similar to the Lennard Jones potential. Small 
values of  ? correspond to long range-interactions (as in alkali metals) while large 
values correspond to short-range interactions (as for C60 molecules which can be 
modeled by the Morse potential with  ?=13.62). The parameter ? influences the 
difficulty of the optimization task (values for which it is known to be difficult to 
find the global minimum are ?=10 and ?=14).  Another potential for which have 
been recently obtained results [3] is the Dzugutov potential defined by: 
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where ?  is the Heaviside function (? (x) is 1 if x>0 and 0 otherwise) and the other 
parameters are: A=5.82, a=1.87, B=1.28, b=1.94, c=1.10, d=0.27 and m=16. 
Systems interacting according to Dzugutov potential  have been found to be good 
glass-formers. 
 
3. A differential evolution-based approach for cluster optimization.  In the last 
decade a lot of evolutionary algorithms have been applied to the global 
minimization of energy landscapes, especially to Lennard-Jones clusters and 



EVOLUTIONARY OPTIMIZATION OF MOLECULAR CLUSTERS 

449 

occasionally to Morse clusters [1,5,6,7]. Most of the evolutionary approaches are 
based on a hybridization between an evolutionary search process and a local 
minimization procedure used to refine the results provided by the evolutionary 
algorithm.  One of the main issues in applying evolutionary algorithms to cluster 
optimization is the computational cost of the process. This could be reduced by 
using evolutionary algorithms with fast convergence. Differential evolution (DE) 
[8] is such a simple and fast algorithm.  Its basic idea is to generate new trial 
individuals from the elements of the current population by randomly selecting three 
so-called parents X1, X2 and X3 and  by combining them as follows: Y=X1+Fx(X2-
X3). The vector Y is then probabilistically crossed over with an element of a 
population, X, and the result, Z, is compared with X. If Z is better than X then it will 
replace X in the population. A first adaptation of this algorithm to cluster 
optimization problems is presented in [4] (DELP). The particularities of this 
approach are: (i) at each generation the candidate, Z, is refined by applying a local 
search procedure; (ii) it is an iterative approach in the sense that the initial 
population corresponding to n particles is generated from the local minimizers 
obtained for the case of n-1 particles filled in with randomly generated 
components. The results reported in [4] (Lennard-Jones and Tersoff potentials) 
suggest that a lot of function evaluations are needed in order to obta in a good 
approximation of the global optimum. Starting from this remark we tried to modify 
the approach in [4] such that the computational cost is reduced. The particularities 
of our approach are: (i) the standard DE algorithm is replaced with a crowding-
based DE [9] characterized by a higher exploration power and ability to identify 
many potential optima; (ii) the local optimization procedure (a simple descent 
gradient or the Nelder-Mead method) is applied only after the evolution not during 
the evolution (thus the number of functions evaluations could be reduced); (iii) the 
population initialization is also different as that in [4]:  the initial population 
corresponding to the case of  n particles is generated by randomly perturbing the 
estimation of the optimum found at the previous stage (for n-1 particles).   
 
4. Results and discussion.  In this section we present some results obtained for 
Morse (Table 1) and Dzugutov cluster (Table 2) by using the following control 
parameters: crossover probability: p=0.1,  perturbation factor: F=0.5, population 
size: m=50, 1000 generations. Because of smaller populations and fewer calls of 
the local minimization procedure the algorithm which we used lead to fewer 
function evaluations than DELP [4]: for instance, in the case of Lennard-Jones 
cluster, for n=10, DELP needs 4653885 function evaluations to find the global 
optima while our approach used only 121876 functions evaluations to obtain an 
estimation within 0.0001 precision. 

At least for small clusters the proposed approach gives a good estimation 
of the optimal structure by using fewer function evaluations than in [4].  The 
variant involving a simple gradient descent method seems to give better results 
than that based on the Nelder-Mead method. However the variant with Nelder-
Mead method can be applied also for non-differentiable potential functions (e.g. 
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Dzugutov). Results in Table 2 suggest that for small clusters the method which we 
propose leads to better structures than those reported in [3]. However this is no 
more true for clusters having more than 8 particles.  

Table 1. 
Results obtained for the Morse potential  (?=10) 

Global optimum No. of function evaluations n 
DE+Gradient 
descent 

DE+Nelder-
Mead 

Reported in 
[10] 

DE+Gradient 
descent 

DE+Nelder-
Mead 

5 -9.003539 -9.003537 -9.003565 71656 92842 
6 -12.009623 -12.009609 -12.094943 96876 117200 
7 -15.956481 -15.956282 -15.956512 108800 197493 
8 -18.964599 -18.913307 -18.964638 126248 242955 
9 -22.850722 -21.876290 -22.850758 136426 409852 
10 -25.861408 -26.582537 -26.583857 173340 484672 

 
Table 2. 

Results obtained for the Dzugutov potential 
n 5 6 7 8 9 10 
DE+Nelder-Mead -5.2204 -6.9472 -9.2187 -10.9383 -12.1024 -11.5231 
Reported global opt. [3] -5.1949 -6.8954 -9.1104 -10.8009 -13.0043 -15.1822 
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