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The different nanostructures (quantum dots, wires and wells) have specific properties which differ from those of
the corresponding bulk structures. This fact leads to many applications in several branches of physics. In the
paper we examine the behavior of a quantum system (a free particle and a quantum free particle gas) trapped
inside the infinite quantum well, by using the coherent states formalism. Our approach is based on the fact that
the dynamical group associated with the infinite quantum well is SU(1, 1), with the Bargmann index k = 1/2.
These coherent states always have the sub-Poissonian behavior. There is a similarity between the energy main
quantum number n and the absolute value of the complex variable z which labels the coherent states. This
allows us to make a useful approximation in order to calculate the partition function and some thermodynamic
characteristics of a canonical non interacting particle gas embedded in the infinite square quantum well.
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1. INTRODUCTION

Long time the quantum well has be seen only as a first theoretical
model used for teaching purposes to familiarize students with
the concept of energy quantization. But, in the last decades, due
to the development of the nanoscience and nanotechnology the
quantum well model has been reconsidered as a particular kind of
heterostructure consisting of one thin “well” layer, surrounded by
two “barrier” layers, of certain, practically of some finite height,
but which, under certain conditions, can be considered as infinite.

As it is well-known, the properties of nanostructures (quan-
tum dots, wires and wells) are different from those of the corre-
sponding bulk structures and this fact lead to many applications
in condensed matter, optoelectronic devices, sensors, electronic
and light emitting components (lasers). Consequently, it is of
interest to examine the behavior of the particles in quantum
wells. In the paper we examine the behavior of a quantum sys-
tem (an individual free particle and a quantum free particle gas)
trapped inside the infinite quantum well (QW) 0 < x < L by using
the coherent states (CSs) formalism, according to the sequence:
nanoparticles - QW — CSs.

2. MOTION IN AN INFINITE SQUARE
POTENTIAL QUANTUM WELL

Let we consider a quantum particle with effective mass m*
trapped inside an infinite square potential quantum well potential
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along the x-axis with width L and recall some well-known
results regarding the motion of the particle. The corresponding
Schrodinger equation for stationary states
)
e R ()
m* dx
with the boundary conditions: ¥,(0) = ¥, (L) = 0 leads to the
following normalized eigenfunctions and corresponding energy
eigenvalues:

? B2l
¥ (x) = \/f sin( 22 x), E,= T2 = hon?
L L 2m*L?
ha?
0= ——
2m*L?
The normalized eigenfunctions are real and we insert here the

well-known relation from the quantum mechanics textbooks ful-
filled by them, by virtue of the general conditions of the orthog-

onality of wave functions:
2> (nw . (nm ,
=Y sin[{ — x)sin{ —x
L= L L

=8(x—x") 3)

H\Pn(x) = E”\I’”(X), H=-

2

2 V,(0) P, (x)
n=0

Generally, this equation can be regarded also as a consequence
of the boundary condition for the canonical density operator in
the coordinate representation

p(x,x's B) = 30 e PE, (x) W, (x') 4)

n=0
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whose limit is

30, (x)

n=0

}aingjp(x,x/; B) = W, (x) = 8(x —x') ®)

In order to construct the coherent states, it is not less important
to emphasize that the particle motion in an infinite quantum well
is stationary and their energy is quantized, the difference between
the energy levels is not equal, but increases with increasing prin-
cipal quantum number n, ie., AE, =E,, —E, = ho(2n+1).
This means that the transition of particle between the superior
energy levels is more difficult that between than between lower
levels. By considering an electron trapped inside an infinite quan-
tum well of width L = 1072 m, the “variable quanta” hw is
approximately 0.3 - 10738 J, while for the width of atomic dimen-
sion order L = 10~ m, this value is 0.3 - 1017 J.

3. SU(1,1) GROUP
The quantum SU(1, 1) group and the corresponding su(1, 1) alge-
bra have a great relevance due to their applications to many
physical systems coherent and squeezed states.

The SU(1, 1) group generators are K, K_ and K;, which are
defined by the commutation relations

[K_, K+] =2K;, [K; Ki]==%K, (6)

and by the following actions on the complete basis of Fock vec-
tors |n; k) from the infinite-dimensional Hilbert space, where
n=0,1,2,... and k =1/2,1,3/2, ... is the Bargmann index
labeling the irreducible representation:

K, |n; k) =/ (n+1)(n+2k)|n+1; k)
K_|n; k) =/n(n+2k—1)|n—1;k)
Ki|ns kY = (n+k)|n; k) (8)

™

Some years ago, by using the factorization method, Lemus
and Frank have demonstrates that the dynamical group associ-
ated with the infinite quantum well is just SU(1, 1), with the
Bargmann index k = 1/2."2 Then the group generators act on
the Fock basis vectors |n; 1/2 >= |n > in the following manner:

K. ln>=m+1Dn+1>,

1
K;ln >= <n+ 5>|n >

These generators ensure that the energy eigenvalues of a par-
ticle of mass m* trapped inside infinite square quantum well
(ISQW) assumes a simple form:

K |n>=nln—1>

©)

2,2
E,=<n|H|n >:WZTL2 <n|K K_|n>=hon? (10)

We observe that the Hamiltonian operator H is expressed as
the normal ordering product of the creation K, and annihilation
K_ operators (in the sense that into an operator product, the
creation operators K are placed in the left and the annihilation
operators K_ are placed on the right each other). With these
elements we are able to define the coherent states of the infinite

square quantum well.

2
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4. COHERENT STATES

We define the coherent states for the infinite quantum well in the
Barut-Girardello manner in the usual way, i.e., as the eigenvalues
of the lowering operator K_ and we denote these states as BG-
CSs:3

K |z>=z|z> (11)

where z = |z| exp(i¢) is the complex variable labeling CSs.
There are some manners to perform realizations of the SU(1,1)
generators, depending on the specific problems or quantum sys-
tems. Particularly, we consider such a realization of the SU(1,1)
algebra in terms of one dimensional harmonic oscillator (HO-1D)
creation and annihilation operators a* and a*:
K, =+Na*; K_=avVN; K3:N+%Ea+a+% (12)
Evidently that this realization can be regarded as a nonlinear
with respect to the HO-1D creation and annihilation operators
at and a, so that the above defined BG-CSs for the ISQW are
in fact a version of nonlinear CSs of the usual (canonical) CSs
for the HO-1D. Consequently, in the next we will shortly denote
these CSs as BG-NCSs for the ISQW.
Recalling that the Fock vectors |n > satisfies the completeness
relation -
dn><n|=1 (13)
n=0
after some straightforward calculations we obtain the develop-
ment of the BG-NCSs for the ISQW as the superposition of the
complete orthonormal Fock-vectors basis |n >:

Z (14)
%10(2|z|> =

where I,(x) is the modified Bessel function of the first kind
defined as:

=]

LQ2lz]) = Z (nl')z
n=0 :

As all CSs, the above defined BG-NCSs for the ISQW are
also normalized but non orthogonal, so the overlap of two such

states is
Iy(2v/7*7')
1o(2]z])1o(2[2'])
Moreover, a crucial property of any set of CSs is that they

allow the decomposition (or resolution) of the unity operator,
namely:’

| (15)

(zl') = (16)

[ dn@z><z1=1 (17)

where du(z) = (do/2m)d(|z|*)h(|z]) is the integration measure
whose weight function 4(|z|) must be determined in the next.

By substituting Egs. (14) and using (13) we successively
obtain:

o0
2
n,m=0

|n><m|

) 1 21 dQD o em
[Pl s [ 5@ =1 (9)

n!m!

The result of the angular integration is (|z|?)"§,,,, so that,
in order to accomplish the completeness relation (13), we must
have

/ d(|zP)h(lz]) o (12" = (al)? (19)

1 (2| )
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If we perform the function change, as well as the exponent
change:

1
L(2z))°

we come to the Stietjes moment problem®

g(lz]) = h(|z]) n=s—1 (20)

fow d(lz)g(lz)(|z*)™" = [T(n+ D] 20

where I'(x) is the Euler’s gamma function.®

The solution of this integral equation is g(|z|) = 2K,(2|z]),
where K,(x) is the modified Bessel function of the second kind
and, consequently, the integration measure becomes:

dpu(z) =2;L:d(|2|2) 1o (2|2 Ko (2]z]) (22)

With these elements, we can express the expectation value of
a certain operator A, in the representation of the BG-NCSs for
the ISQW as follows:

1 i Zn(z*)m

I,(2|z]) o nlm!

(zlAlz) = (m|Aln) (23)

‘We will focus our attention especially on those operators which
are diagonal in the Fock-vectors basis, such as the Hamiltonian
H or particle number operator N = K; —1/2, the latter having
the following eigenequations:

Nin>=n|n>, N'ln>=n’ln>, s=1,2,... (24)

Their expectation values in the BG-NCSs for the ISQW rep-
resentation are
1 i (="

L(2]z]) = (n)?

1 1

d s
- 5 TaT (mm) LRE)  @3)

(z|N*|z)

For different values of the power index s, in order to express
the above differentiation operator we can use an ansatz elaborated
in the Appendix B of our previous paper.’

For the expectation value of the Hamiltonian operator in the
BG-NCSs for the ISQW representation we obtain:

h2ar?
E\z\z =(z|H|z) = W<Z|K+K—|Z>
h2ar?
= 5l =haldf (26)

where we have used the following properties of the modified

Bessel functions:®®

d d
W =00, L= @)

Now it is interesting to examine the behavior of the field of
the BG-NCSs for the ISQW and for this purpose it is useful
to examine the values of the Mandel parameter as function of
variable |z|. The Mandel parameter is defined as:°

V. N2|z) — (< 2| N|z >)?
0, = [ o &NV —(<zNfz =)

< z|N|z >

1 28
< z|N|z > @8
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Depending of the values of the Mandel parameter, the field of
CSs is as follows:

<0 sub-Poissonian field — sub-Poissonian statistics
Q1 =0 Poissonian field — Poissonian statistics
> (0 super-Poissonian field — super-Poissonian statistics

By using Egs. (25) and (27), the Mandel parameter BG-NCSs
for the ISQW is

1,(2]z]) 11(2|Z|)]_1 (29)

Qw:k{a@ub_h@kb

As we can see from Figure 1, the Mandel parameter BG-
NCSs for the ISQW is always negative, i.e., the field of the BG-
NCSs for the ISQW is always sub-Poissonian and these states
obeys the sub-Poissonian statistics. This means that the variance
Vi = (zIN?[z) — ((zIN|z))* of these states is always less than
the mean value in the BG-NCSs for the ISQW representation
(z|N|z). In other words the BG-NCSs for the ISQW have non-
classical behavior (states with no classical analogue). Due to
their non-classical behavior, these states have received consider-
able attention in many modern fields of physics (quantum optics,
quantum information, quantum communication, nanotechnology
and so on).

In the end of this section we examine some aspects of the BG-
NCSs for the ISQW from the point of view of the, “generalized
IWOP technique.” The TWOP (Integration Within an Ordered
Product of Operators) technique was founded by Fan (see, e.g.,
Ref. [10] and the references therein, where we can see their main
rules).

By using Eq. (9), we obtain (K, )"|0 >=n!|n > and, inserting
this result in Eq. (14), we obtain:

1 > (ZK+)n

T nam s e 07

1 -
=j102 K+ 0> 30
T eV GO

which shows that the BG-NCSs for the ISQW can be obtained
also as the normalized action of the operatorial modified Bessel

function of the first kind (2\/ zK ) on the vacuum fundamental
state |0 >.

Q\z\

0.1

0.2

0.3

0.4

Fig. 1. The Mandel parameter Q, of BG-NCSs for the ISQW.
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Their counterpart is, then obtained by the conjugation

2| = < 0|I,(2y/z*K_) (31

1
VI2lz)

The projector onto a BG-NCS for the ISQW is the written in
an ordered operatorial manner (this was pointed out by using the
normal ordered symbol ::), i.e.,

lz><z|= 1,(2y/ZK)|0 > < 0|1,(2\/z*K_) = (32)

1
L (2lz])
In order to deduce the expression of the projector on the vac-
uum state |0 >< 0| for the case of the BG-NCSs for the ISQW

we appeal to the resolution of the unity operator, Eq. (17) where
we replace Egs. (30) and (31):

[l =<2l =2 [ Py aleh [ 5 122K
|0><0],2vVz*K_) =1 (33)

The angular integral is solved by using the definition of I,(x):

748 LRI = < 027K ) =

—0>< O|n§0%' 02” 9 (ym

=10><0] ZO (K, {{)4) sz (34)
|0><0|n§0 ,)4 2[RRI =1 (39)

The last integral is (n!)>® so we obtain:

:]0><0] Z KK K)

- Ty = =10 ><0|l,(2/K.K_):=1 (36)

Finally, the projector on the vacuum state of the BG-NCSs for
the ISQW is
1

10(2\/1( K_ )

and then the projector onto a BG-NCS for the ISQW becomes:

0><0| = 37)

1 . IO(ZJK)IO(ZV ZK_) .
1)(2lz]) . 10(%/@) .

lz><z| = (38)

Consequently, using the rules of generalized IWOP technique,
the expectation value of an operator built in the ordered operator
manner A= A(K,, K_) can be written as:

1
<zlAlz> = ——— <0
Ih(2lz])

2y RDAK . K )VTK)
L(2/K,K.)

10> (39)
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5. STATISTICAL PROPERTIES

In order to examine the statistical properties of the BG-NCSs
for the ISQW let we consider a mixed (thermal) state with the
corresponding canonical normalized density operator:

1

e PR |y s < 40
=75 Z n><n| (40)

where Z () is the partition function:
Z(B) = Z ePhor = 93(0 e Pty —1] (41)

Generally, we have been expressed the partition function
through the Jakobi theta function 65, but the use of this expres-
sion is inconvenient. Therefore it is useful to fix our attention on
the similarity between the expressions for the expected values of
energy in two representations, |n > and |z >:

E,=hon’ & Ep= hw|z|? (42)
i.e., to the similarity n?> & |z|°.

In addition, given that the value of Aw is very small (see the
values at the end of Section 2), we can calculate the partition
function as integral over the variable |z|:

S et o 7.(B)

n=0

_Bholz? 1
_/ Brolz (|7 |)_\/}‘17(ru\/ﬁ

The internal energy of a particle “gas” of N, non- interacting
particles “embedded” in the infinite quantum well, at the equi-
librium temperature 7', usually calculated as

Z(B) =

(43)

U = No(H) = NoTr(pH) =

ZE

101 Z(B) =
N, 4 InZ(B) (44)
= - —In
VN, 5 i
due to the above similarity can be calculated as follows:
U, Nalz(ﬁ) N11 (45)
=—vNy,—InZ.(B)=—-vN,-—
c A BB c A 2 ,B
Then the molar heat capacity at the constant volume is
19U, 1
Cy=——& =_ 29 —R 46
V=27 B:B 3 ,3 =3 (46)

This result is the same as for on degree of freedom in the
motion of the ideal non-interacting monoatomic gas. This coinci-
dence should not surprise us because for the particle trapped into
an ISQW the confinement effect may appear only in the trans-
verse direction while particles are free to move in one dimension
(along the structure, the axis Ox in our example).

6. CONCLUDING REMARKS

In the paper we have examined some properties of the Barut-
Girardello coherent states (BG-CSs) for a particle embedded in
an infinite square quantum well (ISQW). We have used the fact
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that the quantum group associated with this physical model is
SU(1,1) which allows building of these kind of states by choosing
the Bargmann index k = 1/2. These coherent states have always
the sub-Poissonian behaviour. We have also showed that is exists
a certain similarity between the energy main quantum number n
and the absolute value of the complex variable z which labels
the coherent states. This similarity allows us to make an useful
approximation in order to calculate the partition function and also
some thermodynamic characteristics of a canonical non interact-
ing particle gas embedded in the infinite square quantum well.
Due to non-classical behavior of the BG-NCSs for the ISQW,
these states have received an important role in many modern
fields of physics (quantum optics, quantum information, quantum
communication, nanotechnology and so on).

At this place we can say that it exists various approaches
related to the construction of the CSs for infinite quantum
well,> 11-12-16 which demonstrate the practical interest on this
subject. Even if the infinite quantum well model is usually far
from the properties of real quantum systems, this simple model
has several advantages in order to highlight some behaviors or

RESEARCH ARTICLE

effects in various simple nanostructure systems. Our approach
only completes this image.
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