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In the present paper we have constructed the Green’s function for the pseudcharmoni-
cal potential, which is considered as an intermediate potential between the harmonic and
anharmonic potentials. We have used a hybrid method, by combining the Laplace trans-
formation method and the Green's function technique. The Green’s function is used for
obtaining the density matrix for a quantum-statistical system, in coordinate representa-
tion. Even if this is not a new result, the method can be applied to a class of exactly
solvable potentials.

1 Preliminaries

In the past years there has been a considerable interest for the pseudoharmonical
oscillator (PHO) potential {1-3]:

@y = ™ (1 _ 1Y
Vo) = B (L -1 (1
when 7y is the equilibrium position of the oscillator of mass m and frequency w.
Here and bellow, the index (p) refers to the characteristical quantities of PHO.

Particularly, it is of interest to construct the density matrix of PHO, via the
Green’s function, due to the fact that PHO admits an exact analytical solution
of the Schrédinger equation. At the same time, by means of the harmonical limit
(ro — 0), the PHO passes to the harmonical three-dimensional (HO-3D) poten-
tial, which is a mathematically rigorously solvable problem. In this manner, the
obtained results for the PHO can be easily verified by comparing with the corre-
sponding results for the HO-3D. On the other hand, PHO is, in a certain sense, an
intermediate potential between the harmonic three-dimensional oscillator potential
(which is an ideal potential) and the anharmonic potentials, as the Morse oscillator
(MO) potential, which is a more realistic potential, in good agreement with the
experimental spectroscopical data.
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We consider the simplest quantum-mechanical system, namely, a spinless par-
ticle in the central potential (1). The motion of this system is governed by the
Schrédinger equation, with the Hamiltonian:

h? 2
— V(P) , 2
H(7) 2mV + (r) (2)
which can be transformed in the traditional manner as follows:
h2
—5=Vi+ V()| RY) = ERRY) (), (3)

where v, J and M are the principal, the orbital and the magnetic quantum numbers,
respectively, and Rff,) {(r) are the radial function of the eigenfunction \II,E’})M(F) of the
Hamiltonian (2). The potential

K JJ+1
ViP(r) = vO(r) + }7,1‘(—7,2*) (4)

is the effective potential. The interest towards effective potentials proceeds from
the fact that these potentials, in different approximations, facilitate the obtain-
ing of analytical results for the molecular wave functions and evaluating molecular
vibration-rotation spectra. The most usual approximation method of the effective
pseudoharmonic vibration-rotation potential is to rewrite it as a shifted pseudo-
harmonic potential with the same force constant as there for the corresponding
centered (rg = 0) three-dimensional harmonic oscillator [2]. We propose a rather
different way. By using an idea of Molski [4], the effective PHO potential can be
easily transformed in the following manner:

mw? rorr\?

VP = B (L -2 B, (5)

2

muw
ER) = 5 (rf—rd), (6)

1/4
2h \?
ry = 1o [1 + (mwl7'2> J(J +1) (7)
0

The oscillator with the potential (5) is called the displaced PHO (with J # 0).
In comparison with the nondisplaced PHO (with J = 0), the displaced PHO has
the same frequency w and the same mass m, so that we can talk about the same
oscillator. When we consider the rotation (J # 0), this fact has as a consequence
the scale shift of the energy, so that Schrédinger’s equation (3) becomes:

h? mw? roor\?
[~—v3 + 2 (oo ) J RO = (B - B) R0 = s RO,
(8)
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In the right-hand side of this equation we can see that the energy E,(,'}) is di-
minished by the quantity E‘(()’_'}) (called the effective rotation energy). This fact is a
consequence of the equilibrium position change ro — ry, caused by the centrifugal
force.

Let us consider a system of identical pseudoharmonical oscillators (the quan-
tum gas), without interactions, which are in thermodynamical equilibrium with the
reservoir (thermostat) at temperature T' = (kg/3)~!. This system obeys the quan-
tum canonical distribution, characterized by the canonical density matrix, which
will be deduced by means of the Green’s function.

In the coordinate (position) representation, the global density matrix may be
expressed as follows [3]:

P77 B) = Z(2J+ 1)Ps(cos 7)pF(r,#', B), (9)
J

while the radial density matrix is

PP, v 8) = Zexp( BEEHYRB)(r)RE) ('), (10)

where we have used the orthogonality properties of the angular functions Y (0, ).
Here Py (cos ) is Legendre’s polynomial, ¥ — the angle between the vectors 7 and
7' and R (r) — the radial part of the eigenfunction ¥, (p ) m (7).

The global density matrix (9) satisfies the Bloch equatlon

o I o o
- g5/7 (R 7 8) = HRp (7, 7; 8) (11)
with the limiting condition
lim §P(F, 73 ) = 67~ ), (12)

where the 3D Dirac distribution is (see, e.g. [5]):
57— i) = ri L~ 1) 5(9 #)6(p — ). (13)

Generally speaking, for a Bloch equation involving the Hamiltonian H(7) and
the energy eigenvalue E, like Egs. (11) and (12), a function G(7,7’; E) defined as:

G 7 E) = / e PE (7, 7'; B)dB, (14)
0

leads to the Green’s equation for the Hamiltonian H(7):
(H(F) — E]G(F, 7', E) = §(F— 7). (15)
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- =4

Therefore, the density matrix in the coordinate (position) representation p(7, 7';
B) plays the role of the inverse Laplace transform of Green’s function G(7,7'; E)
of the Hamiltonian H(7), these two functions being related one to another. Then,
the density matrix becomes:

a4io0
p(7, 7' B) = -Z_;I'T / G(F,7'; E)e’PdE = Z Res, [G(7,7; E)e’E] . (16)
a-100 n=1l

The canonical density operator p is the operator with the maximal significance
for the quantum-statistical approach of any system which is in the state of the
thermodynamical equilibrium with the reservoir (thermostat) [6]. Consequently, it
is very important to know the density operator (or, in a certain representation, the
density matrix) of the examined system, because the expected value of a certain
physical observable, which characterizes the quantum system, is expressed through
the density matrix.

In the case of the quantum system, which we have examined, i.e. the PHO-
quantum gas, the expected value of such a physical observable A() is

(A(p)) =

1 @Y (7)) (7 7 -
Z(p)(ﬂ) /Ap )pp( ﬂ) ;dr, (17)

where the trace of the density matrix is just the partition function Z®)(8) and the

succession of the operations is the following: first, the operator A®)(#’) acts on
the function p(7,#’; ) (actmg only on the dashed variable 7'), then the dash is
deleted. Finally, integration is performed over the variables without the dash [7).

Because the PHO-potential (1) is a central field potential, the radial density
matrix (10) also satisfies the Bloch equation

h? mw? L
T p)(r,r ;B) = {—%Vf+'—8-—7'3 <E"—J) (p)] (p)(f" r'8), (18)

r
lim p<">(r ' 8) = ——6(r—r) (19)
Similar with Ref. 3, we use the following function substitution:
o (r1"8) = o' P (r,7's B) exp (BES) (20)

and the Bloch equation for this new function, which is called reduced density matrix,
becomes:
hz 62 2

T (£-2) } Pnrih). @)

Imar? " 78 r; T

- _ (p)(r r ,,3) [_

By means of these manipulations, we have obtained a Bloch equation similar
to the Bloch equation for the nonrotating (one dimensional) PHO motion and of
course, this case is easier to deal with.
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2 Green’s function

For solving Eq. (21) we adopt the Green’s function method. At first, we introduce
the Laplace’s transform of reduced radial density matrix (20):

GP(rr50) = £ [P 0)] = f eGP (r, s B)ap. (22)
0

So, by multiplying Eq. (21) by exp(—sf) and integrating over the variable g =
(kgT)~!, where T is the equilibrium absolute temperature, due to the limiting
condition (19), we obtain the following equation for the Green’s function (22):

A2 mw?,r 1y 2 ) /
['Zﬁﬁ 3 (5-8) o Pera=ie-n, @

where, see Eq. (8), s = —¢yy = —(Ef,{’,) -~ Eé{’,)), i.e. the sign opposite eigenvalue of
the Schrédinger equation (8) for the PHO.
By using the notation

E=1inmwr]-s= Eff,) + mw?rl, (24)
this equation can be written again in the following appearance:
R 2mmw? 1 mw? , =] 4 .z . /
[—2—"'{ <a‘ﬁ - Tlr'—s—‘l“]ﬁ) + '—8—7' - E] GJ(f’,f' } E) = —17’16(7'— r ), (25)

which is similar to Eqs. (3) and (5) of the paper of Chetouani et al. [8]. In this
paper, the Green’s function for the Morse potential is calculated in the SO(2,1)
algebric approach. In Eq. (25) we have used the new function:

Ga(r,v'; B) = —ihGP(r,7';5). (26)

Equation (25) is, in fact, the Green’s equation for a 3D isotropic harmonic oscillgtor
constrained to a centrifugal repulsion and with the shifted energy eigenvalue E.
Taking into account Eq. (22), we obtain:

Gs(r ', B) = (~ih) / =58P (r, v, ). @)
0

By following Ref. 8, we can write the solution of Eq. (25) as Schwinger’s integral
representation [9]:

ooy - W iz vz o, vz
Gi(r,r E) = o rr/dtexp(hE't) I_ZIO,J< ; rrl_z)
0

l+z] , (28)

L O R Sl il
xexp[ 4h(r +r )l—z
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where we have used the notations:
z = exp(—iwt) (29)
mw mw 2
(3573) \/ T+ K (3573) (30)

and I, (...) are the modified Bessel functions.
With the following new notations:

= w2 L
r= 2hr, y= 2hr , (31)

Eq. (28) becomes:
00 .
& LRy = T S g
Gi(r,7'; E) = o rr /dtexp(hEt)

z(a;+1)/2[ “’/2Ia (WwyZ) p( x+y1+z)] (32)

1—-2 1—2 2 1~

In this appearence, the quantity in the square brackets can be transformed using
the Hille-Hardy relation {10]:

Z MLE@LE) 0 _ () (-32Y) (Y2 ) @

Fa+v+1) -2 1-

where L%(...) are Laguerre’s polynomials. We obtain:

Gy(r, v E) = rr! exp (__:p_-;-_y) (zy)*/?

0 ! wrrrarin [ | fas+1 E
XQ;OWLU ()L (y)!dtexp(—l[cu( J2 +U)—7{D’ (34)

Integration over the variable ¢ leads to the expression

Gy(r,#;E) = (- lh \/W(:cy)“’/zexp ( -;-y)

vIL37 () L3 (y) 1
XZ Nas+v+1) [Hoas+1)+v]hw—E (35)

We use this expression of the PHO Green’s function for obtaining the corre-
sponding radial density matrix in coordinate representation (10) and, finally, the
global density matrix (9).
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By using Eq. (22), the inverse Laplace transform of the radial Green’s function
G(j’ ) (r,7'; 8) can be obtained by means of the residuum theorem:
a+ioco N
o, B8) = 2L7r1 f GP)(r,1';5)e’Pds = :L;l Res, [G(”)(r, r';s)e’ﬁ] . (36)
a~ioo
So, we obtain, according to Egs. (24) and (26):

(")(rr B) = —-\/77(:cy)“’/2exp< a:-;-y)

Ly (2) L7 (y) e’
R 7 . 7
E Flas+v+1) Z o [L(es + 1) +v] hw + s — mw?r? (37

The function into the square brackts has a single simple pole with respect to the
variable s = —¢,:

- [y + 1) +v) hw — tmw?r3] = (E,(,pj) - E((f})) , (38)

which, on one hand, leads to the correct energy eigenvalues for PHO [1]:
E®) = hw (v+ 1) + Lhway — dmw?r? (39)
and, on the other hand, Eq. (37) becomes:

2
(”)(r,r B) = -———\/rr exp[ ( l: r%—a";—lhw)]

a I L3I (&)L ( w
x (xy)*? /% exp (— ) Z F(QJ(+)U+ 13;) (PP ) (40)

When we are again using the Hille-Hardy relation (33) and Eq. {31), we finally
obtain:

2
() _ mw l e
P B) = e’“’(ﬁ 4 "3> sinh (38hw) 2k

, 2h) v’
X exp [—% (7’ +r 2) coth( ﬂhw)] Io, (gﬁ%) . (41)

According to Eq. (20), the radial density matrix p(p )(r, v, B) is

P i g oy mw? , 1 mw/(2h)
Py (’"”"ﬁ)‘ex"(ﬁ 3 r)smh( Tahw) /oo

mw , fiw mw/(2h) rr’
X exp[ 4’, (7‘ -§-7'2) coth(ﬂ )] ay (W) . (42)

This expression is the same as the previous obtained results in Ref. 11, where
the starting point was Eq. (10).
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By using an original method, involving the properties of Legendre polynomials
and Bessel functions, in Ref. 3 we have restricted the expression (9) for the global
density matrix and we have obtained the following result:

- o 1 — 2Xcos vy + A?)sinh (3 Bhw
PO 75 B) = JOF 73 8), | I !
——rr'sin y

4h

pe mw rr'sin’y

X Z I (as+1) (Rsinh (%Bhw)) .

J=0

(43)

Here we have evinced the global density matrix of the isotropic 3D harmonic
oscillator of the same mass m and the frequency wo = w/2:

3/2 1
© 7 g) = mwg
P B) ( 2rh ) [sinh(,@h‘-"ﬂ)]S/2

2 cos
X exp (—%—;—0- [( %+ r'?) coth(Bhwo) — mrrl]) . (44)

The dimensionless parameter |A| < 1 characterizes the degree of anharmonicity
and the index (0) refers to the corresponding quantities of the harmonic oscillator.

3 Conclusions

In the present paper we have obtained the Green’s function for the pseudohar-
monical oscillator potential (PHO), which is used for expressing the corresponding
density matrix in the coordinate (position) representation.

The used method is a hybrid one, based on the Laplace transformation and
the “traditional” Green’s function techniques. By transforming the initial PHO
Hamiltonian, we get to a (ireen’s equation, which has the same form as that for
the Morse oscillator, from Ref. 8. So, it was possible to use the solution obtained
in Ref. 8, as Schwinger’s integral representation, for our problem, i.e. for the PHO
Green’s function.

The final expression for the density matrix (43) corresponds to our expression in
Refs. 3 and 11, but it’s obtained in another way. Even if this result is not new, the
method for obtaining the density matrix via the corresponding Green’s function
can be, also, applied to a class of exactly solvable potentials. The advantage of the
presented method consists in its simplicity in comparison with other methods (e.g.
the Feynman’s path integrals method [6] or the shape invariance method [12]).
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